ข้ามไปที่เนื้อหาหลัก

Two Sigma Financial Modeling Code Competition

เช้านี้นั่งอ่านบทความหนึ่ง ชื่อ "Two Sigma Financial Modeling Code Competition, 5th Place Winners’ Interview" เขาสัมภาษณ์ผู้ชนะอันดับ 5 ในการแข่งขันรายการ Two Sigma Financial Modeling Challenge รายการนี้แข่งขันปี 2016 -2017 ระยะยาวและ Two Sigma ซึ่งเป็น Quant Fund อันดับต้นของโลกก็จัดรางวัลให้เต็ม รวม $100,000 พร้อมโอกาสร่วมธุรกิจ ทำให้มีคนสนใจแข่งรายการนี้มากพอควรกว่า 2000 ทีม



บทความนี้ยาว ผมขอสรุป key สำคัญสั้น สำหรับผมสิ่งที่น่าสนใจคือ ผู้ชนะอันดับ 5 ทีม Bestfitting เขาใช้เทคนิค lag-N features ในการทำ Feature Engineering ของข้อมูล Time Series , การทำ Quant โมเดล เขาเริ่มจากการทดลองสร้าง weak model ออกมาก่อน จากนั้นปรับปรุงเรื่อยๆ ให้ดีขึ้น level ต่อมาเป็น stable model แต่สิ่งที่น่าสนใจคือ เขาไม่ได้ปรับแบบเปลี่ยนใหม่ แต่เป็นการทำ Ensemble model ซึ่งรองรับความเป็น dynamic ของตลาดไม่ใช่การ prediction แบบโมเดลเดียว fit all , พัฒนา self-adaptive strategy สร้างตัวแปรใช้ปรับการโมเดลแปรผันตาม ค่า market volatile (volatility data) ออกแนวคล้าย reinforcement learning (แต่ไม่ได้สร้างโมเดลแบบ RL เต็มรูปแบบ)



บทความไม่ได้เจาะสูตรลับ แต่ถ้าอ่านให้จบ เข้าใจการทำ Quant โมเดลมากขึ้นครับ