เมื่อวานเขียนถึงเรื่อง overfitting วันนี้เอา paper หนึ่งมาฝาก ชื่อ Real numbers, data science and chaos: How to fit any dataset with a single parameter ช่วยให้เห็นภาพเข้าใจปัญหาข องประเด็นนี้มากขึ้น (ไม่ต้องหลายพารามิเตอร์ แค่หนึ่งพารามิเตอร์ก็ over fit ได้)
ถ้าใครไม่ชอบอ่าน paper ที่มี math เยอะๆ ลองดู code ภาษา python โปรเจค single-parameter-fit ด้านล่างก็ได้ เขาสาธิตให้เห็นการเทคนิค สร้างโมเดล ที่มา fit กับ traning dataset หรือข้อมูลในอดีต ที่เตรียมไว้ ด้วยตัวแปรเดียว นอกจากข้อมูลทั่วไป เขายังสาธิตข้อมูลประเภท time series เช่น S&P500 index ด้วย
เชื่อว่าได้ลองศึกษาบทความน ี้ จะช่วยให้เรากระจ่างมากขึ้น ส่วนเทคนิคลดทอนการ over fiitting ของการพัฒนาโมเดล / พัฒนาระบบเทรด ก็มีหลายทาง เช่นการทดสอบจาก simulation ของข้อมูลจำนวนมากๆ, การทำ Regularization,การทดสอบ Cross-validation , การทำ Walk Forward Analysis and Optimization เป็นต้น
นี้เป็นอีกคำตอบหนึ่ง ที่ว่าทำไมระบบเทรด สถิติจาก back test สวยๆเวอร์ๆ จึงเอาไปเทรดจริง ในตลาดไม่รอด ...
ศึกษาเพิ่มเติมจาก
https://arxiv.org/abs/ 1904.12320
https://github.com/Ranlot/ single-parameter-fit/blob/ master/ generalization.timeSeries.i pynb
ถ้าใครไม่ชอบอ่าน paper ที่มี math เยอะๆ ลองดู code ภาษา python โปรเจค single-parameter-fit ด้านล่างก็ได้ เขาสาธิตให้เห็นการเทคนิค สร้างโมเดล ที่มา fit กับ traning dataset หรือข้อมูลในอดีต ที่เตรียมไว้ ด้วยตัวแปรเดียว นอกจากข้อมูลทั่วไป เขายังสาธิตข้อมูลประเภท time series เช่น S&P500 index ด้วย
เชื่อว่าได้ลองศึกษาบทความน
ศึกษาเพิ่มเติมจาก
https://arxiv.org/abs/
https://github.com/Ranlot/